Journal of Organometallic Chemistry, 152 (1978) C5–C8 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

DIENE EXCHANGE AT FIVE-COORDINATE IRON: A KINETIC STUDY

JAMES A.S. HOWELL* and PHILIP M. BURKINSHAW

Department of Chemistry, University of Keele, Keele, Staffordshire, ST5 5BG (Great Britain)

(Received February 20th, 1978)

Summary

A kinetic study of the exchange between various $(\eta^4$ -enone)Fe(CO)₃ complexes and 1,3,5-cycloheptatriene (chpt) to yield $(\eta^4$ -chpt)Fe(CO)₃ shows that the reaction proceeds via competing associative and dissociative pathways.

Complexes of structure I have been used in the last few years as a convenient source of the Fe(CO)₃ moiety in the preparation of $(\eta^4$ -polyolefin)-Fe(CO)₃ complexes by exchange of the ketone on reaction with the free polyolefin [1a-c]. Although several mechanistic studies have been performed on substitution reactions of I [2] and the related $(\alpha,\beta$ -unsaturated Schiff base)-Fe(CO)₃ complexes [3] with Group V ligands, little is known about the diene exchange reaction. We report here our preliminary results on the mechanism of this substitution involving reaction of Ia-Id with 1,3,5-cycloheptatriene (chpt) to yield $(\eta^4$ -chpt)Fe(CO)₃.

$$Ph$$
 R^2 R^1 O R^3 O $Fe(CO)_3$

(Ia) $R^{1} = CH_{3}, R^{2}, R^{3} = H$ (Ib) $R^{1}, R^{2}, R^{3} = H$ (Ic) $R^{1} = Ph, R^{2}, R^{3} = H$ (Id) $R^{1} = Ph, R^{2} = H, R^{3} = CH_{3}$ Reactions were performed in dry, degassed toluene under nitrogen; relative concentrations of chpt of between 10/1 and 200/1 (chpt/complex) ensured pseudo-first-order conditions. Infrared monitoring of the disappearance of complex over at least four half-lives yielded first-order rate constants (k_{obs}). Figure 1 shows a plot of k_{obs} vs. [chpt] for complexes Ia and Ic; similar plots were obtained for Ib and Id.

The results are consistent with the mechanism shown in Scheme 1, containing both an associative pathway and a dissociative pathway involving initial cleavage of the Fe—CO π -bond.

Application of the steady state approximation to (A) yields the rate law $\frac{-d[C]}{dt} = \frac{k_1 k_2[L][C]}{k_{-1} + k_2[L]} + k_a[L][C] \text{ where C is Ia-Id. Thus,}$

$$k_{\rm obs} = \frac{k_1 k_2[L]}{k_{-1} + k_2[L]} + k_a[L]$$
(1)

For large [L] where $k_2[L] >> k_{-1}$, eq. 1 reduces to $k_1 + k_a[L]$. From the gradient of the linear portion of Fig. 1, a value of k_a may be calculated, while the intercept of this line gives k_1 . These values are tabulated in Table 1. Rearrangement of eq. 1 yields eq. 2.

$$\frac{1}{\frac{k_{\text{obs}}}{[L]} - k_{a}} = \frac{k_{-1}}{k_{1}k_{2}} + \frac{[L]}{k_{1}}$$
(2)

Figure 2 illustrates a plot of the left hand side of eq. 2 as a function of [chpt] for Ia and Ic. From these and the similar linear plots obtained for the other complexes, values of k_{-1}/k_2 were obtained, and are tabulated in Table 1;

C6

KINETIC DATA AT 90°C FOR REACTION SCHEME				
	$10^4 k_1 (s^{-1})$	$10^4 k_a (M^{-1} s^{-1})$	$10^2 k_{-1}/k_2$	
Ia Ib	8.10	21.26	8.4	
Ie	1.92	6.34	3.1 12.6	
Id	1.87	9.58	27.2	

TABLE 1 KINETIC DATA AT 90°C FOR REACTION SCHEME

values of k_1 obtained from Fig. 2 were consistent with those obtained from Fig. 1. The intermediacy of (B) is indicated by (a) direct infrared observation in the case of Id, and (b) the non-linear nature of the rate of appearance of (chpt)Fe(CO)₃.

An increase in the electron donor ability of \mathbb{R}^1 results in an increase in k_1 (Ph < H < Me), consistent with previous results [3], although substitution of an electron donor at position \mathbb{R}^3 (Id) remote from the dissociation site has little effect. K_a values also increase in the same order, implying a greater bondbreaking than bond-making character in the $S_N 2$ transition state [4], although steric effects may also have some influence.

Fig. 2.

The remarkable selectivity exhibited by these reagents towards tautomeric polyolefin mixtures [1b] is perhaps the most interesting aspect of these reactions, and we are currently investigating kinetically reactions of Ia with a wide range of polyolefins.

References

- for example, (a) J.A.S. Howell, B.F.G. Johnson, P.L. Josty and J. Lewis, J. Organometal. Chem., 39 (1972) 329; (b) M. Brookhart, G.O. Nelson, G. Scholes and R.A. Watson, J. Chem. Soc. Chem. Commun., (1976) 195; (c) C.R. Graham, G. Scholes and M. Brookhart, J. Amer. Chem. Soc., 99 (1977) 1180.
- 2 G. Cardaci and G. Bellachioma, Inorg. Chem., 16 (1977) 3099.
- 3 G. Bellachioma and G. Cardaci, J. Chem. Soc. Dalton, (1977) 2181.
- 4 J. Hine, Physical Organic Chemistry, McGraw-Hill, New York, p. 171.